Dry Cask Storage of Nuclear Spent Fuel

Division of Spent Fuel Storage and Transportation U.S. Nuclear Regulatory Commission

Overview of Dry Cask Storage

Used Nuclear Fuel in Storage

(Metric Tons, End of 2009)

Historical and Projected SNF Discharges

SOURCE:

Impacts Associated with Transfer of Spent Nuclear Fuel from Spent Fuel Storage Pools to Dry Storage After Five Years of Cooling, EPRI 11/10

Dry Cask Storage

- 63 licensed ISFSIs (8 more than 2010)
- Expect 10 sites pursuing General License
- Over 1400 loaded storage casks

At-Reactor SNF Dry Storage Facilities

SOURCE:

Impacts Associated with Transfer of Spent Nuclear Fuel from Spent Fuel Storage Pools to Dry Storage After Five Years of Cooling, EPRI 11/10

Examples of Dry Cask Storage

Oconee ISFSI

- Site-Specific License issued to Duke Power January 31, 1990
 - 20 year license
 - Oconee switched to General License NUHOMS in 1998
 - 84 NUHOMS-24P systems loaded under site-specific license
 - 44 NUHOMS-24P systems loaded under general license
- Issued Oconee renewal on May 29, 2009 for 40 years

McGuire ISFSI

- Initial loading in 2001
- 10 TN-32 casks loaded under site-specific license
- 26 NAC-UMS casks loaded under general license
- In 2010 began using NAC International's MAGNASTOR system under general license

Fort St. Vrain ISFSI

Private Fuel Storage

Application submitted June 1997

License issued February 2006

Toole County, Utah

Private Fuel Storage

- HOLTEC Hi-Storm 100 Cask System
- 200 Canisters per Year Average Intake
- 40,000 MTU (4,000 Canisters)

Status of Private Fuel Storage

- PFS has an NRC approved license.
- BIA denied approval of PFS lease and BLM denied approval of right-of-way for rail line.
- Skull Valley Band of Goshute Indians, and PFS sue Department of Interior for review of BLM and BIA decisions.
- U.S. District Court for Utah remands BLM and BIA decisions to DOI for reconsideration (July 2010).

Current NRC Regulatory Framework for Storage Certificates

Renewable Term Licenses Aging Management Plan

Time-limited aging analyses

Design for prevention

Monitoring – how, how often,

in-situ

Maintenance – what type

Corrective Actions – when

Technical Review Guidelines

- Standard Review Plan for Dry Cask Storage Systems (NUREG-1536)
- Standard Review Plan for Spent Fuel Dry Storage Facilities (NUREG-1567)
- Standard Review Plan for Renewal of Spent Fuel Dry Cask Storage System Licenses and Certificates of Compliance (NUREG-1927)
- Interim Staff Guidance Documents

A Pilot Probabilistic Risk Assessment of a Dry Cask Storage System at a Nuclear Power Plant - NUREG-1864

- The overall risk of dry cask storage was found to be extremely low.
- The estimated aggregate risk is an individual probability of a latent cancer fatality of 1.8×10⁻¹² during the first year of service, and 3.2×10⁻¹⁴ per year during subsequent years of storage.

Examination of Spent PWR Fuel Rods after 15 Years in Dry Storage -NUREG/CR-6831

- Based on the Surry fuel rod data, no deleterious effects of 15-years of dry cask storage were observed.
- Creep testing indicated that the cladding retains significant creep ductility after dry-cask storage.
- Creep would not increase appreciably during additional storage because of the low temperature after 15 years.
- Hydrides appear to have retained a circumferential orientation

Typical Dry Storage Cask Operations

Spent Fuel Storage Casks

Dual Purpose Storage Cask*

Overall Length: 197 to 225 in. Loaded Weight: 360,000 lbs. Typical Payload: 24 PWR Bundles

* Storage and Transportation

HI-STORM 100)

Dual Purpose Cask*

Overall Length: 178 in

Loaded Weight: 240,000 lbs. Typical Payload: 68 BWR Bundles

Preparation of Empty Canister

Fuel Loading in Transfer Cask

Welding of Canister Lid

Transfer of Canister into Overpack

Transfer of Overpack to ISFSI Pad

Storage Cask Array on ISFSI Pad

Transfer of Canister into Module

Module Cask Array

How do we get spent fuel out of pools?

PWR Assembly Decay Heat Curve

Figure 2-2 PWR SNF Assembly Decay Heat as a Function of Burnup and Cooling Time [BSC 2001, DOE 1992]

EPRI Estimates of Dry Cask Loadings needed to move Spent Fuel into Dry Storage after 5 years

Figure 4-1
Comparison of Dry Storage Systems Loaded Annually Under the Industry Base Case and the Industry 5-Year Cooled SNF Case

EPRI Estimates of Total Dry Cask Loadings resulting from moving Spent Fuel into Dry Storage after 5 years

Figure 4-2
Cumulative Dry Storage Systems Loaded Under the Industry Base Case and the Industry
5-Year Cooled SNF Case

How did we get where we are now?

Existing Storage and Transportation Regulations

- Current storage and transportation regulations are flexible enough to:
 - accommodate a wide range of operational and design conditions
 - support future changes in technology/policy (because they are based on performance requirements rather than specific technologies).
- Current storage and transportation regulations permit operational and design conditions:
 - that do not have same end and beginning points
 - that are based on costs or policy optimizations of a single fuel cycle phase
 - may result in extra operations or inconsistencies

Integration of Storage and Transportation

Storage and Transportation can be integrated by requiring licensees to lay out a proposed transportation strategy before they are granted approval to store. The strategy would replace 72.108. It may look like:

Integrating Storage and Transportation will not directly address disposal.

Integration of Storage/Transportation and Disposal

Need to know repository design parameters such as canister size and heat loads, and role of fuel cladding to integrate regulation of repository operations

Developing a Regulatory Framework for Extended Storage and Transportation

Regulatory Needs

Confidence Decision

Updated in 2010 for licensed life plus 60 years Commission directed staff to prepare separate long-term update for beyond life plus 60 years

Extended Storage and Transportation (EST)

Potential changes to regulations and guidance

Opportunity to improve integration of storage and transportation regulations and guidance

Technical needs

Risk informing

Technical Basis for EST

Technical Gap Assessment Component performance System performance Implications for Aging Management Implications for Transportation and Disposal (or Reprocessing) after Extended Storage Coordination with Analysis of Environmental

Impacts for Long-term Update of Waste

Confidence Decision

Example: Cladding Integrity

Safety Functions

Primary fission product barrier

Geometry control

Defense in Depth

Technical Challenges

Higher burnup levels

Temperature effects

New cladding types

In-situ monitoring in sealed canisters

Example: Canister Integrity

Safety Functions
Confinement
Inert environment
Criticality control
Technical Challenges

Long-term corrosion
Basket properties
Absorber efficiency
Monitoring sealed internals

Example: Overpack Performance

Safety Functions

Shielding

Heat transfer

Robustness against severe events

Long-term degradation

Response to external natural events and external

Path Forward: Phase 1

Synthesis of Technical Gap Assessments
Draft synthesis report for comment, Fall 2011
Final synthesis report, Spring 2012

Regulatory Plan

Integration of EST regulatory needs and Waste Confidence long-term update

Research plan to address technical gaps

Cooperative Research (e.g., ESCP)

Stakeholder Involvement