I have reviewed the Nuclear Regulatory Commission's Draft Environmental Impact Statement for Combined Licenses for Comanche Peak Nuclear Power Plant, Units 3 and 4, and I offer the following comments regarding the revision based on my best professional judgment.

Summary
After reviewing the draft, it is my professional judgment that the NRC Staff has committed numerous errors in the calculation of the need for power.

The DEIS failed in the need for power discussion to adequately consider reductions in demand for power and additional capacity from renewables, additional capacity already planned for the ERCOT market and the ability to cost effectively provide significant quantities of additional power through simple modifications to the existing natural gas generation. Additionally, the market conditions make it unlikely that proposed Comanche Peak Units 3 and 4 would be able to operate competitively in the ERCOT market.¹

The DEIS has also failed to calculate the significance of climate change on the environment, the methods of calculating the global climate change emissions from the proposed nuclear generating facility, the significance of the emissions from this plant compared to alternatives and the impact of climate change on the operations of this plant.

These issues are discussed below.

The NRC Staff’s DEIS is flawed because it failed to do a thorough analysis of the need for power².

NRC Staff failed to adequately consider:

Net Revenue Analysis The Ercot 2009 State of the Market Report by POTOMAC ECONOMICS, LTD (ERCOT market monitor) performs an analysis of the ERCOT market: Net revenue is defined as the total revenue that can be earned by a new generating unit less its variable production costs. It represents the revenue that is available to recover a unit’s fixed and capital costs. Hence, this metric shows the economic

¹ 2009ERCOT_SOM_REPORT_Final.pdf, Page XX.
² Standards for critiquing the need for power section are from Draft NUREG-1937 D-54 March 2010:
Affected states or regions may prepare a need for power evaluation and assessment of the regional power system for planning or regulatory purposes. A need for power analysis may also be prepared by a regulated utility and submitted to a regulatory authority, such as a state public utility commission. However, the data may be supplemented by information from other sources. The determination for the need for power is not under NRC’s regulatory purview. When another agency has the regulatory authority over an issue, NRC defers to that agency’s decision. The NRC staff will review the need for power and determine if it is (1) systematic, (2) comprehensive, (3) subject to confirmation, and (4) responsive to forecasting uncertainty. If the need for power evaluation is found to be acceptable, no additional independent review by the NRC is needed. The information provided in this comment will be considered to determine whether it significantly affects the forecast on which the applicant relied for its need for power analysis.
signals provided by the market for investors to build new generation or for existing owners to retire generation. In long-run equilibrium, the markets should provide sufficient net revenue to allow an investor to break-even on an investment in a new generating unit, including a return of and on the investment. In the short-run, if the net revenues produced by the market are not sufficient to justify entry, then one of three conditions likely exists:

(i) New capacity is not currently needed because there is sufficient generation already available;

(ii) Load levels, and thus energy prices, are temporarily low due to mild weather or economic conditions; or

(iii) Market rules are causing revenues to be reduced inefficiently.

Likewise, the opposite would be true if the markets provide excessive net revenue in the short-run. Excessive net revenue that persists for an extended period in the presence of a capacity surplus is an indication of competitive issues or market design flaws. The report estimates the net revenue that would have been received in 2008 and 2009 for four types of units: a natural gas combined-cycle generator, a simple-cycle gas turbine, a coal unit, and a nuclear unit.

The figure above shows that the net revenue decreased substantially in 2009 compared to each zone compared in 2008. Based on our estimates of investment costs for new units, the net revenue required to satisfy the annual fixed costs (including capital carrying costs) of a new gas turbine unit ranges from $70 to $95 per kW-year. The estimated net revenue in 2009 for a new gas turbine was approximately $55, $47 and $32 per kW-year in the South, Houston and North Zones, respectively. For a new combined cycle unit, the estimated net revenue requirement is approximately $105 to $135 per kW-year. The estimated net revenue in 2009 for a new combined cycle unit was approximately $76, $67 and $52 per kW-year in the South, Houston and North Zones, respectively.
These values indicate that the estimated net revenue in 2009 was well below the levels required to support new entry for a new gas turbine or a combined cycle unit in the ERCOT region. Prior to 2005, net revenues were well below the levels necessary to justify new investment in coal and nuclear generation. However, high natural gas prices through 2008 allowed energy prices to remain at levels high enough to support new entry for these technologies. The production costs of coal and nuclear units did not change significantly over this period, leading to a dramatic rise in net revenues. With the significant decline in natural gas and energy prices in 2009, these results changed dramatically from recent years. For a new coal unit, the estimated net revenue requirement is approximately $190 to $245 per kW-year. The estimated net revenue in 2009 for a new coal unit was approximately $93, $84 and $70 per kW-year in the South, Houston and North Zones, respectively. For a new nuclear unit, the estimated net revenue requirement is approximately $280 to $390 per kW-year. The estimated net revenue in 2009 for a new nuclear unit was approximately $194, $187 and $172 per kW-year in the South, Houston and North Zones, respectively. These values indicate that the estimated net revenue for a new coal and nuclear unit in the South, Houston and North Zones was well below the levels required to support new entry in 2009. This calls into question the validity of the NRC staff's determination on 8-1 line 43 that market conditions justify Luminant's proposal.

2) Peaking energy rather than base load is required: On page 43 of the Potomac report the conclusions state that peaking energy rather than base load (as stated by Luminant) is on the increase and that while average loads increased from 2006 to 2008 and decreased in 2009 it was the top 5% of high demand hours that increased significantly, more than double than 2008. This trend is predicted to continue and significant additional capacity is expected to be needed that will operate less than 5% of the hours in a year or less. In addition, the implementation of PRR 776 allowed quick start turbines, which had been participating in the non-spinning reserve market to offer their capacity into the balancing energy market increasing their ROI and providing additional balancing energy.

3) Underestimating the continued growth of the wind generation market in Texas: at page 9-21, lines 3 thru 8, Luminant concluded that it would take more than 10,000 MW of wind to replace the base load capacity provided by the proposed CPNPP units 3 and 4. Texas has now “officially” exceeded the 10,000 MW of installed wind capacity threshold (with 10,030 MW) based on information on ERCOT’s Renewable Energy Credit (REC) Program website. Texas has already exceeded the goals set for its renewables program for the year 2025.

<table>
<thead>
<tr>
<th>Technology Type</th>
<th>REC Gen Accts</th>
<th>Offset Gen Accts</th>
<th>New MW Capacity</th>
<th>Offset MW Capacity</th>
<th>Total Current MW Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td>6</td>
<td>0</td>
<td>40.3</td>
<td>0.0</td>
<td>40.3</td>
</tr>
<tr>
<td>Hydro</td>
<td>3</td>
<td>2</td>
<td>33.1</td>
<td>178.5</td>
<td>211.6</td>
</tr>
<tr>
<td>Landfill Gas</td>
<td>14</td>
<td>1</td>
<td>80.3</td>
<td>3.3</td>
<td>83.6</td>
</tr>
<tr>
<td>Solar</td>
<td>3</td>
<td>0</td>
<td>1.2</td>
<td>0.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Wind</td>
<td>77</td>
<td>3</td>
<td>9914.6</td>
<td>115.8</td>
<td>10030.4</td>
</tr>
<tr>
<td>Total (rounded)</td>
<td>103</td>
<td>6</td>
<td>10,069.5</td>
<td>297.6</td>
<td>10,367.1</td>
</tr>
</tbody>
</table>

Based on this information there is currently enough wind power alone to provide the necessary

3 2009_ERCOT_SOM_REPORT_Final.pdf page 43
4 2009_ERCOT_SOM_REPORT_Final.pdf page 45
5 ERCOT’S 2009 ANNUAL REPORT ON THE TEXAS RENEWABLE ENERGY CREDIT TRADING PROGRAM
capacity according to Luminant's calculations.

4) The DEIS analysis does not account for increases in wind carrying capacity: ERCOT has also increased their estimate of wind carrying capacity reported in their March 2010 report from 708 MW to 793 MW in May or a 12% increase in just 2 months and an additional increase of 115 MW by 2015. This does not take into account any increases in effective load carrying capacity (ELCC) factor that coastal or off shore wind developments might add or the addition of large scale storage in the market to time shift the energy provided by wind or solar generation assets.

5) More efficient deployment and dispatch: With the nodal deployment in December of 2010 there should be significant reductions in congestion based dispatch of generation resources. The West Energy Zone in ERCOT transitioned from a net importer in 2006 to a net exporter in 2008 and 2009. This reflects the significant increases in the installed capacity of wind resources in the West Zone that occurred over this time period. The bifurcated process of resolving zonal and local congestion can at times lead to reliability conflicts that are difficult to resolve within the relatively inflexible framework of the zonal market design. The nodal market will provide many improvements, including unit-specific offers and shift factors, simultaneous resolution of all transmission congestion, actual output instead of schedule-based dispatch, and 5-minute instead of 15-minute dispatch, among others. These changes should help to increase the economic and reliable utilization of scarce transmission resources well beyond that experienced in the zonal market, and in so doing, also dispatch the most efficient resources available to reliably serve demand.

6) The increase of responsive reserves: ERCOT currently acquires 1,150 MW of load acting as a responsive reserve (LaaRs) but as of December 2009, over 2,200 MW of capability were qualified as LaaRs.

7) The ability of natural gas generation units to inexpensively increase capacity: ERCOT currently calculates EFDH (equivalent forced de-rated hours) of its natural gas turbine fleet due to the decrease in energy output based on weather conditions (increase in inlet air temperature decreases the output of the turbine).

6 This is ERCOT’s effective load carrying capacity (ELCC) of additional wind generation expected to be available from planned units installed by 2015. The ERCOT Effective Load Carrying Capacity is an estimate calculation by ERCOT on the availability of wind recourse to carry firm load for an extended period of time. In effect it takes the most conservative approach to de-rate the amount of energy that wind provides to the market. It does not take into account the availability of wind generation to provide energy to the market but is an obsolete worst case calculation that is used to perform generation planning. On 3/25/2010 ERCOT reported on a new study to revise these calculations as the old capacity factor has become dated with the installation of thousands of MW new wind generation all across the ERCOT market that have substantially different generation profiles than originally calculated. In addition the original calculation did not take into account all hours of the year but used a statistical sampling, a low number of iterations were used to simplify the calculation and only randomized days were modeled for each month. The new calculation should provide a higher ELLC that more accurately characterizes the generation capability provided by the wind generation resources. However it will not take into consideration the deployment of energy storage and other technologies being deployed to optimize delivery of the energy generated. From the ERCOT report dated 3/25/2010 they will be addressing these shortcomings for the 2012 projections and realize that this adjustment will have to be updated to account for additional generation as it is deployed.

7 2009_ERCOT_SOM_REPORT_Final.pdf
An example of monthly incremental electrical energy provided by various TIC options for a 316-MW Cogeneration system in Pasadena, TX (Punwani 2001)8

Adding Turbine inlet cooling (TIC) can provide significant increase in energy during the peak load months when it’s needed while reducing emissions for a low cost. A national study showed that the reduction in capacity exceeded 29,000 MW in the summer months9, on average, that could be restored by proper application of this technology. The hot southern states have a greater impact in reduction due to climate conditions of this sort.

8) The much lower cost of energy efficiency: As an example, recent reports by Nexant10 in a study of the San Antonio demand side management program show that their energy efficiency program has significant energy savings at very low cost. They stated in their report to San Antonio, “As programs expand, CPS Energy should continue planning for the resources necessary to support large-scale deployment of DSM program portfolio and to achieve both short-term and long-term goals.” The overall cost of the program as defined for the energy efficiency programs only is: “Cost of Saved Energy = $0.032/kWh.” This does not take into account the additional reduction in peak costs that their load management programs achieved. The combined programs were determined to have achieved a reduction of 44.7 MW of peak energy with an expected energy savings of 86,712,978 kwh. The Texas Public Utility Commission has issued a modification of the state's energy efficiency incentive program and has released a rule that will change the goal of the program. The proposed rule will increase the annual reduction from the current standard of 20% of new growth in demand to 25% and then to 30% of new growth in demand. Using the published ERCOT consumption data11 this would reduce energy consumption in the regulated areas of the state starting in 2012 and increasing every year annually would reduce the need for the projected additional generation. ERCOT does not currently use energy efficiency other than those based on Texas HB3693 in its projections and is currently shown to be calculated at only 242 MW annually this savings will increase to approximately 300 MW annually and will total an additional 580MW saved that are

11 Ercot May 2010 load forecast and reserve margin update.
not shown in the DEIS table 8-1. In addition ERCOT's current long term demand forecasting does not include future increases in savings from improved building codes, the many large municipalities that are introducing programs that go above the current required code (Dallas, Austin etc). It does not include weatherization or energy efficiency programs implemented by municipally owned utilities, Austin and San Antonio have set aggressive goals in this regard. New appliance standards, solar and other distributed generation and DSM programs (Austin Energy's current program controls between(100-160 MW) of load at peak) will all have an effect of reducing the need for new generation.

9) Texas Non-wind RPS: The PUC is considering adding an additional renewable energy mandate to the state’s existing Renewable Portfolio Standard. This has been assigned a project #35792 and a straw-man has been issued. This would provide an additional 500 MW of generating capacity in the ERCOT market.

10) New Building codes: The State Energy Conservation Office (SECO) has announced that the state will be adopting the IECC 2009 building code. The International Energy Conservation Code (IECC) is a national, consensus-based, model code. The 2009 IECC is expected to result in significant energy savings and related emissions reductions estimated at 12 to 15% annual improvement for average homes. In a report examining the potential for energy efficiency in Texas, the American Council for an Energy Efficient Economy estimates that with this new code Texas could save 10,533 kilowatt hours of electricity annually and 2,362 megawatts annually of peak summer demand by 2023. These new standards have significant increases in the requirements for energy savings that are required for all new construction. According to the Building Code’s Assistance Project (BCAP) when Texas begins implementing the 2009 IECC and Standard 90.1-2007 statewide in 2011, businesses and homeowners would save an estimated $785 million annually by 2020 and $1.605 billion annually by 2030 in energy costs (assuming 2006 prices). Additionally, implementing the latest model codes would help avoid

12 The hearing on this rule was held 4/30/2010, final comments were filed 5/11/2010, rule would apply starting in 2011 at 100MW and ramp to 500 MW by 2015
13 House Energy Resources Subcommittee for Energy Efficiency and Renewables April 2, 2009, Written Testimony of Kate Robertson, Energy Efficiency Specialist Environmental Defense Fund
15 SUBCHAPTER E. TEXAS BUILDING ENERGY PERFORMANCE STANDARDS 34 TAC §19.53
‘The Comptroller of Public Accounts proposes new §19.53, concerning building energy efficiency performance standards. The new section is created in compliance with Health and Safety Code, §388.003(b-1), which authorizes the State Energy Conservation Office (SECO) to adopt equivalent or more stringent energy codes than those adopted in Health and Safety Code, §388.003(a) and (b).
New §19.53(a) adopts the energy efficiency provisions of the International Residential Code as they existed on May 1, 2009, as the energy code for single family residential dwellings, as that term is defined in Health and Safety Code, §388.002(12). New §19.53(b) adopts the International Energy Conservation Code as it existed on May 1, 2009, for all other residential, commercial, and industrial construction in this state.
(a) Single-family residential construction. Effective January 1, 2012, the energy efficiency provisions of the International Residential Code as they existed on May 1, 2009, are adopted as the energy code in this state for single-family residential construction as it is defined in Health and Safety Code, §388.002(12).
(b) All other residential, commercial, and industrial construction. Effective January 1, 2011, the International Energy Conservation Code as it existed on May 1, 2009, is adopted as the energy code for use in this state for all residential, commercial, and industrial construction that is not single-family residential construction under subsection (a) of this section.
This agency hereby certifies that the proposal has been reviewed by legal counsel and found to be within the agency’s legal authority to adopt.
Filed with the Office of the Secretary of State on March 11, 2010.”
16 http://bcap-energy.org/
about 213.9 trillion Btu of primary annual energy use by 2030 and annual emissions of more than 15.6 million metric tons of CO2 by 2030.\footnote{http://bcap-ocean.org/state-country/texas}

11) The new study on Energy Efficiency in the South found that fewer new power plants would be needed with a commitment to energy efficiency.\footnote{April 13, 2010 Georgia Institute of Technology and Duke University STATE PROFILES OF ENERGY EFFICIENCY OPPORTUNITIES IN THE SOUTH: TEXAS} The analysis of nine illustrative policies shows the ability to retire almost 25 GW of older power plants – approximately 10 GW more than in the reference case. The nine policies would also avoid over the next twenty years the need to construct 49 GW of new plants to meet a growing electricity demand from the RCI sectors.\footnote{Id} Further, the industrial sector offers the greatest energy efficiency potential in Texas. In 2020, savings from all three sectors is about 10% (1,180 TBtu) of the total energy consumed by the State in 2007. Electricity savings constitute 668 TBtu of this amount. With these policies, the generation of electricity from the equivalent of 17 power plants of 500-MW each could be avoided in the year 2020.\footnote{Id}

12) Additional Federal Incentives: In addition to the $218 million in funding from the American Recovery and Reinvestment Act, additional federal incentives for energy efficiency programs recently passed in the House of Representatives in HB5019 and would provide over $6 billion in energy efficiency retrofit incentives further reducing the need for new generation.

13) Compressed Air Energy Storage: Significant advances in energy storage technologies are being made and several examples were listed in the report. The DEIS omitted the well publicized project that Luminant has announced. “Shell WindEnergy Inc. and Luminant, a subsidiary of TXU Corp., announced today a joint development agreement for a 3,000-megawatt wind project in the Texas Panhandle and to work together on other renewable energy developments in Texas. Shell and Luminant will also explore the use of compressed air storage, in which excess power could be used to pump air underground for later use in generating electricity. This technology will further improve reliability and grid usage and becomes more economical with large-scale projects, such as proposed for Briscoe County. Recent testimony by Shell before the Public Utility Commission of Texas demonstrated the Briscoe County project could deliver the lowest-cost wind energy for consumers. This low cost is driven by excellent wind resources and the comparatively lower cost to bring that energy to market from the Texas Panhandle region."Shell is constantly looking for solutions to deal with climate change and increasing our energy diversity. Wind is part of the answer. Our approach is a cost-effective solution for consumers," said John Hofmeister, president of Shell Oil Company. “Luminant is committed to providing Texans with clean sources of energy, and this agreement with Shell is a real next step in delivering on that commitment” said Mike Chidlers, CEO of Luminant Development. “Luminant is already the state leader in wind-energy purchases, and co-developing this project would take us a long way toward our goal of doubling our portfolio.” “Shell and Luminant will also explore the use of compressed air storage, in which excess power could be used to pump air underground for later use in generating electricity. This technology will further improve reliability and grid usage and becomes more economical with large-scale projects, such as proposed for Briscoe County." should not be overlooked.\footnote{"Luminant - News Release," http://www.luminant.com/news/newsrel/detail.aspx?prid=1087.}

14) As discussed in the “Comments Regarding Luminant’s Revision to the Comanche Peak Nuclear Power Plant” by Raymond H. Dean, Ph.D, there has been considerable additional information on the conclusions of combining new generation power sources with storage that would also apply in this instance. Natural gas, wind, solar; and energy storage either individually or in
combination, are viable alternatives that could both produce base-load power and be environmentally preferable to nuclear generation.

Conclusion

When considering all reductions in demand, due to efficiencies, distributed generation and DSM programs that are implemented by municipally owned utilities, the forecast reflects a likely decrease in the total need for energy by 2020. This reduction in demand, combined with the anticipated additional non-nuclear generation, including increased capacity for wind, solar, geothermal and other renewables, makes the addition of Comanche Peak Units 3&4 unnecessary to meet base-load needs. Then, if the industrial customers follow the recommended guidelines22, an additional 8,500 MW of reduction could be achieved. Any need for additional generation to serve the market at this time would have to be in doubt.

22 Industrials do not currently participate in the State energy efficiency programs